高一生物知识总结

| 浏览次数:

第一章 走近细胞

第一节 从生物圈到细胞

  一、相关概念、

  细 胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统

  生命系统的结构层次: 细胞组织器官系统(植物没有系统)个体种群

  群落生态系统生物圈

  二、病毒的相关知识:

  1、病毒(Virus)是一类没有细胞结构的生物体。主要特征:

  ①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;

  ②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;

  ③、专营细胞内寄生生活;

  ④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。

  2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。

  3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。

  
第二节 细胞的多样性和统一性

  一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞

  二、原核细胞和真核细胞的比较:

  1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。

  2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。

  3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。

  4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。

  三、细胞学说的建立:

  1、1665 英国人虎克(Robert Hooke)用自己与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。

  2、1680 荷兰人列文虎克(A. van Leeuwenhoek),首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。

  3、19世纪30年代德国人施莱登(Matthias Jacob Schleiden) 、施旺(Theodar Schwann)提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。这一学说即细胞学说(Cell Theory),它揭示了生物体结构的统一性。

  
第二章 组成细胞的分子

第一节 细胞中的元素和化合物

  一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到

  2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同

  二、组成生物体的化学元素有20多种:

  大量元素:C、 O、H、N、S、P、Ca、Mg、K等;

  微量元素:Fe、Mn、B、Zn、Cu、Mo;

  基本元素:C;

  主要元素;C、 O、H、N、S、P;

  细胞含量最多4种元素:C、 O、H、N;

  水

  无机物 无机盐

  组成细胞 蛋白质

  的化合物 脂质

  有机物 糖类

  核酸

  三、在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%-

  10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C。

  
第二节 生命活动的主要承担者------蛋白质

  一、相关概念:

  氨 基 酸:蛋白质的基本组成单位 ,组成蛋白质的氨基酸约有20种。

  脱水缩合:一个氨基酸分子的氨基(NH2)与另一个氨基酸分子的羧基(COOH)相连接,同时失去一分子水。

  肽 键:肽链中连接两个氨基酸分子的化学键(NHCO)。

  二 肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。

  多 肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。

  肽 链:多肽通常呈链状结构,叫肽链。

  二、氨基酸分子通式:

  NH2

  |

  R C COOH

  |

  H

  三、 氨基酸结构的特点:每种氨基酸分子至少含有一个氨基(NH2)和一个羧基(COOH),并且氨基和羧基连接在同一个碳原子上(如:有NH2和COOH但不是连在同一个碳原子上不叫氨基酸);R基的不同导致氨基酸的种类不同。

  四、蛋白质多样性的原因是:组成蛋白质的氨基酸数目、种类、排列顺序不同,多肽链空间结构千变万化。

  五、蛋白质的主要功能(生命活动的主要承担者):

  ① 构成细胞和生物体的重要物质,如肌动蛋白;

  ② 催化作用:如酶;

  ③ 调节作用:如胰岛素、生长激素;

  ④ 免疫作用:如抗体,抗原;

  ⑤ 运输作用:如红细胞中的血红蛋白。

  六、有关计算:

  ① 肽键数 = 脱去水分子数 = 氨基酸数目 肽链数

  ② 至少含有的羧基(COOH)或氨基数(NH2) = 肽链数

  

第三节 遗传信息的携带者------核酸

  一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)

  二、核 酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。

  三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成 ;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。

  四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)

  RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿 嘧 啶(U)

  五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。

  

第四节 细胞中的糖类和脂质

  一、相关概念:

  糖类:是主要的能源物质;主要分为单糖、二糖和多糖等

  单糖:是不能再水解的糖。如葡萄糖。

  二糖:是水解后能生成两分子单糖的糖。

  多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。

  可溶性还原性糖:葡萄糖、果糖、麦芽糖等

  二、糖类的比较:

  三、脂质的比较:

  1、主要储能物质

  2、保温

  3、减少摩擦,缓冲和减压

  作用:与细胞膜流动性有关,是生物膜的组成成分之一, 参与血液脂质的运输

  

第五节 细胞中的无机物

  一、有关水的知识要点

  存在形式 含量 功能 联系

  水 自由水 约95% 1、良好溶剂

  2、参与多种化学反应

  3、运送养料和代谢废物 它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。

  结合水 约4.5% 细胞结构的重要组成成分

  二、无机盐(绝大多数以离子形式存在)功能:

  ①、构成某些重要的化合物,如:叶绿素、血红蛋白等

  ②、维持生物体的生命活动(如动物缺钙会抽搐)

  ③、维持酸碱平衡,调节渗透压。

  

第三章 细胞的基本结构

第一节 细胞膜------系统的边界

  一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%),还有少量糖类

  (约2%--10%)

  二、细胞膜的功能:

  ①、将细胞与外界环境分隔开

  ②、控制物质进出细胞

  ③、进行细胞间的信息交流

  三、植物细胞含有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。

  

第二节 细胞器----系统内的分工合作

  一、相关概念:

  细 胞 质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。

  细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。

  细 胞 器:细胞质中具有特定功能的各种亚细胞结构的总称。

  二、八大细胞器的比较:

  1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的动力车间

  2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的养料制造车间和能量转换站,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。

  3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。

  4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的车间

  5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。

  6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。

  7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。

  8、溶酶体:有消化车间之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。

  三、分泌蛋白的合成和运输:

  核糖体(合成肽链)内质网(加工成具有一定空间结构的蛋白质)

  高尔基体(进一步修饰加工)囊泡细胞膜细胞外

  四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。

  

第三节 细胞核----系统的控制中心

  一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;

  二、细胞核的结构:

  1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。

  2、核 膜:双层膜,把核内物质与细胞质分开。

  3、核 仁:与某种RNA的合成以及核糖体的形成有关。

  4、核 孔:实现细胞核与细胞质之间的物质交换和信息交流。

  生物必修2复习提纲

  1. 生物体具有共同的物质基础和结构基础。

  2.细胞是生物体的结构和功能的基本单位;细胞是一切动植物结构的基本单位。病毒没有细胞结构。

  3. 新陈代谢是生物体进行一切生命活动的基础。

  4. 生物体具应激性,因而能适应周围环境。

  5.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。

  6. 生物体都能适应一定的环境,也能影响环境。

  

第一章生命的基本单位--细胞

  7.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。

  8. 生物界与非生物界还具有差异性。

  9.糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。

  10. 一切生命活动都离不开蛋白质。

  11. 核酸是一切生物的遗传物质。

  12.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有这些化合物按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

  13.地球上的生物,除了病毒以外,所有的生物体都是由细胞构成的。

  14.细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

  15. 细胞壁对植物细胞有支持和保护作用。

  16. 线粒体是活细胞进行有氧呼吸的主要场所。

  17. 核糖体是细胞内将氨基酸合成为蛋白质的场所。

  18. 染色质和染色体是细胞中同一种物质在不同时期的两种形态。

  19.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。

  20.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体, 细胞只有保持完整性,才能够正常地完成各项生命活动。

  21.细胞以分裂的方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

  22.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

  23.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。

  

第二章 新陈代谢

  24.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。

  25. 酶的催化作用具有高效性和专一性。

  26. 酶的催化作用需要适宜的温度和pH值等条件。

  27. ATP是新陈代谢所需要能量的直接来源。

  28. 光合作用释放的氧全部来自水。

  29.植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。

  30.高等的多细胞动物,它们的体细胞只有通过内环境,才能与外界环境进行物质交换。

  31.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

  32. 稳态是机体进行正常生命活动的必要条件。

  

第三章 生物的生殖和发育

  33.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的生存和进化具重要意义。

  34. 营养生殖能使后代保持亲本的性状。

  35.减数分裂的结果是,产生的生殖细胞中的染色体数目比精(卵)原细胞减少了一半。

  36.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两条染色体移向哪极是随机的,不同源的染色体(非同源染色体)间可进行自由组合。

  37. 减数分裂过程中染色体数目的减半发生在减数第一次分裂中。

  38.一个卵原细胞经过减数分裂,只形成一个卵细胞(一种基因型)。一个精原细胞经过减数分裂,形成四个精子(两种基因型)。

  39.对于有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞染色体数目的恒定,对于生物的遗传和变异,都是十分重要的

  40. 对于有性生殖的生物来说,个体发育的起点是受精卵

  41.很多双子叶植物成熟种子中无胚乳(如豆科植物、花生、油菜、荠菜等),是因为在胚和胚乳发育的过程中胚乳被子叶吸收了,营养贮藏在子叶里,供以后种子萌发时所需。单子叶植物有胚乳(如水稻、小麦、玉米等)

  42. 植物花芽的形成标志着生殖生长的开始。

  43.高等动物的个体发育包括胚的发育和胚后发育。胚的发育是指受精卵发育成为幼体,胚后发育是指幼体从卵膜内孵化出来或从母体内生出来并发育成为性成熟的个体。

  44.胚的发育包括:受精卵卵裂囊胚原肠胚三个胚层分化组织、器官、系统的形成动物幼体

  

第四章 生命活动的调节

  45.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段,向光的一侧生长素分布的少,生长的慢;背光的一侧生长素分布的多,生长的快。

  46.生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度促进生长,高浓度抑制生长。

  47.在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂一定浓度的生长素溶液可获得无籽果实。

  48.垂体除了分泌生长激素促进动物体的生长外,还能分泌一类促激素调节其他内分泌腺的分泌活动。

  49. 相关激素间具有协同作用和拮抗作用。

  50.(多细胞)动物神经活动的基本方式是反射,基本结构是反射弧(即:反射活动的结构基础是反射弧)。

  51.在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。

  52.动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导地位。

  53.高等动物生命活动是在神经系统-体液共同调节下完成的。

  

第五章 遗传和变异

  54.生物的遗传特性,使生物物种保持相对稳定。生物的变异特性,使生物物种能够产生新的性状,以致形成新的物种,向前进化发展。

  55.噬菌体侵染细菌实验中,在前后代之间保持一定的连续性的是DNA,而不是蛋白质,从而证明了DNA 是遗传物质。

  56.因为绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。

  57.在真核细胞中,DNA是主要遗传物质,而DNA又主要分布在染色体上,所以,染色体是遗传物质的主要载体。

  58.在DNA分子中,碱基对的排列顺序千变万化,构成了DNA分子的多样性;而对某种特定的DNA分子来说,它的碱基对排列顺序却是特定的,又构成了每一个DNA分子的特异性。这从分子水平说明了生物体具有多样性和特异性的原因。

  59.遗传信息的传递是通过DNA分子的复制来完成的,从亲代DNA传到子代DNA,从亲代个体传到子代个体。

  60. DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行。

  61.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故。

  62.基因是有遗传效应的DNA片段,基因在染色体上呈线性排列,染色体是基因的主要载体(叶绿体和线粒体中的DNA上也有基因存在)。

  63. 遗传信息是指基因上脱氧核苷酸的排列顺序。

  64. 遗传密码是指信使RNA上的核糖核苷酸的排列顺序。

  65.密码子是指信使RNA上的决定一个氨基酸的三个相邻的碱基。信使RNA上四种碱基的组合方式有64种,其中,决定氨基酸的有61种,3种是终止密码子。

  66.反密码子是指转运RNA上能够和它所携带的氨基酸的密码子配对的三个碱基,由于决定氨基酸的密码子有61种,所以,反密码子也有61种。

  67.基因的表达是通过DNA控制蛋白质的合成来实现的,包括转录和翻译两个过程。

  68.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。

  69. 生物的遗传是细胞核和细胞质共同作用的结果。

  70.一般情况下,一条染色体上有一个DNA分子,在一个DNA分子上有许多基因。

  71.生物个体基因型和表现型的关系是:基因型是性状表现的内在因素,而表现型则是基因型的表现形式。在个体发育过程中,生物个体的表现型不仅要受到内在基因的控制,也要受到环境条件的影响,表现型是基因型和环境相互作用的结果。

  72.在杂种体内,等位基因虽然共同存在于一个细胞中,但是它们分别位于一对同源染色体上,随着同源染色体的分离而分离,具有一定的独立性。在进行减数分裂的时候,等位基因随着配子遗传给后代,这就是基因的分离规律。

  73.由显性基因控制的遗传病的发病率是很高的,一般表现为代代遗传。

  74.在近亲结婚的情况下,他们有可能从共同的祖先那里继承相同的隐性致病基因,而使其后代出现病症的机会大大增加,因此,近亲结婚应该禁止。

  75.具有两对(或更多对)相对性状的亲本进行杂交,在F1进行减数分裂形成配子时,等位基因随着同源染色体的分离而分离的同时,非同源染色体上的基因则表现为自由组合。这一规律就叫基因的自由组合规律。